Ежедневные вопросы по поводу того, почему же насосы не могут всасывать жидкость с глубины более 9 метров сподвигли меня написать статью об этом.
Для начала немного истории:
В 1640 г. в Италии герцог Тосканский решил устроить фонтан на террасе своего дворца. Для подачи воды из озера был построен трубопровод и насос большой длины, каких до этого еще не строили. Но оказалось, что система не работает — вода в ней поднималась только до 10,3 м над уровнем водоёма.
Столб ртути в трубке установился на высоте 760 мм над поверхностью ртути в сосуде. Вес столба ртути сечением в 1 см2 равен 1,033 кг, т. е. в точности равен весу столба воды такого же сечения высотой 10,3 м. Именно с такой силой атмосфера давит на каждый квадратный сантиметр любой поверхности, в том числе и на поверхность нашего тела.
Примечание: на самом деле давление равно 1,033 кг/см2.
Плотность воды при температуре 20°С равна 1000 кг/м3.
Ускорение свободного падения – 9,8 м/с2.
Из этой формулы видно, что чем меньше атмосферное давление (P), тем на меньшую высоту может подняться жидкость (т.е. чем выше над уровнем моря, например в горах, тем с меньшей глубины может всасывать насос).
Также из этой формулы видно, что чем меньше плотность жидкости, тем с большей глубины можно её выкачивать, и наоборот, при большей плотности глубина всасывания уменьшится.
Например, ту же ртуть, при идеальных условиях, можно поднять с высоты не более 760 мм.
Предвижу вопрос: почему в расчетах получился столб жидкости высотой 10,3 м, а насосы всасывают только с 9 метров?
Ответ достаточно простой:
— во-первых, расчет выполнен при идеальных условиях,
— во-вторых, любая теория не дает абсолютно точных значений, т.к. формулы эмпирические.
— и в-третьих, всегда существуют потери: во всасывающей линии, в насосе, в соединениях.
Т.е. не возможно в обычных водяных насосах создать разряжение, достаточное для того, чтобы вода поднялась выше.
Итак, какие выводы из всего этого можно сделать:
1. Насос не всасывает жидкость, а лишь создает разряжение на своём входе (т.е. уменьшает атмосферное давление во всасывающей магистрали). Вода выдавливается в насос атмосферным давлением.
2. Чем больше плотность жидкости (например, при большом содержании в ней песка), тем меньше высота всасывания.
3. Рассчитать высоту всасывания (h) можно, зная, какое разряжение создает насос и плотность жидкости по формуле:
h = P / ( ρ* g) — x,
где P – атмосферное давление, — плотность жидкости. g – ускорение свободного падения, x – величина потерь (м).
Примечание: формула может использоваться для расчета высоты всасывания при нормальных условиях и температуре до +30°С.
Также хочется добавить, что высота всасывания (в общем случае) зависит от вязкости жидкости, длины и диаметра трубопровода и температуры жидкости.
Например при увеличении температуры жидкости до +60°С, высота всасывания уменьшается почти в два раза.
Это происходит потому, что возрастает давление насыщенных паров в жидкости.
В любой жидкости всегда присутствуют пузырьки воздуха.
Думаю, все видели, как при закипании сначала появляются маленькие пузырьки, которые затем увеличиваются, и происходит кипение. Т.е. при кипении, давление в пузырьках воздуха становится больше, чем атмосферное.
Давление насыщенных паров и есть давление в пузырьках.
Увеличение давления насыщенных паров приводит к тому, что жидкость закипает при более низком давлении. А насос, как раз и создает в магистрали пониженное атмосферное давление.
Т.е. при всасывании жидкости при высокой температуре, существует возможность её закипания в трубопроводе. А никакие насосы не могут всасывать кипящую жидкость.
Вот, в общем, и всё.
А самое интересное, что все это мы все проходили на уроке физики при изучении темы «атмосферное давление».
Но раз вы читаете эту статью, и почерпнули что-то новое, то именно «проходили» 😉